Underwater object detection technique is of great significance for various applications in underwater the scenes. However, class imbalance issue is still an unsolved bottleneck for current underwater object detection algorithms. It leads to large precision discrepancies among different classes that the dominant classes with more training data achieve higher detection precisions while the minority classes with fewer training data achieves much lower detection precisions. In this paper, we propose a novel class-wise style augmentation (CWSA) algorithm to generate a class-balanced underwater dataset Balance18 from the public contest underwater dataset URPC2018. CWSA is a new kind of data augmentation technique which augments the training data for the minority classes by generating various colors, textures and contrasts for the minority classes. Compare with previous data augmentation algorithms such flipping, cropping and rotations, CWSA is able to generate a class balanced underwater dataset with diverse color distortions and haze-effects.
翻译:水下物体探测技术对于水下场景的各种应用具有重大意义。 然而,舱位不平衡问题仍然是目前水下物体探测算法的一个尚未解决的瓶颈问题。 它导致不同类别之间的巨大精确差异:拥有更多培训数据的占支配地位的班级能够达到更高的检测精确度,而培训数据较少的少数类班能够达到较低的检测精确度。 在本文中,我们提出了一个新型的舱位风格增强算法(CWSA ), 以产生一个从公众对水下数据集UPRPC2018 的等级平衡的水下数据集平衡18 。 CWSA 是一种新型的数据增强技术,通过生成不同颜色、质素和对少数民族类的对比来增强少数类的培训数据。 与先前的数据增强算法相比, 如翻转、裁剪裁和旋转, CWSA 能够产生一个具有不同颜色扭曲和烟雾效应的等级平衡水下数据集。