Commonsense reasoning tasks such as commonsense knowledge graph completion and commonsense question answering require powerful representation learning. In this paper, we propose to learn commonsense knowledge representation by MICO, a Multi-alternative contrastve learning framework on COmmonsense knowledge graphs (MICO). MICO generates the commonsense knowledge representation by contextual interaction between entity nodes and relations with multi-alternative contrastive learning. In MICO, the head and tail entities in an $(h,r,t)$ knowledge triple are converted to two relation-aware sequence pairs (a premise and an alternative) in the form of natural language. Semantic representations generated by MICO can benefit the following two tasks by simply comparing the distance score between the representations: 1) zero-shot commonsense question answering task; 2) inductive commonsense knowledge graph completion task. Extensive experiments show the effectiveness of our method.
翻译:普通知识图的完成和普通问题解答等常识推理任务需要强有力的代表性学习。在本文件中,我们提议学习MICO的常识知识代表制,MICO是一个关于COmmonsense知识图的多选择对比学习框架。MICO通过实体节点之间的背景互动和与多选择对比学习的关系生成了常识知识代表制。在MICO中,知识的三倍(h,r,t)中头项和尾项实体转换成两种以自然语言为格式的对等关系知识序列(前提和替代办法)。MICO产生的语义代表制可以简单地比较两个表达方式之间的距离分数,从而对以下两项任务有利:(1) 零点常见回答问题回答任务;(2) 隐含常识知识图完成任务。广泛的实验显示了我们方法的有效性。