Recently Koopman operator has become a promising data-driven tool to facilitate real-time control for unknown nonlinear systems. It maps nonlinear systems into equivalent linear systems in embedding space, ready for real-time linear control methods. However, designing an appropriate Koopman embedding function remains a challenging task. Furthermore, most Koopman-based algorithms only consider nonlinear systems with linear control input, resulting in lousy prediction and control performance when the system is fully nonlinear with the control input. In this work, we propose an end-to-end deep learning framework to learn the Koopman embedding function and Koopman Operator together to alleviate such difficulties. We first parameterize the embedding function and Koopman Operator with the neural network and train them end-to-end with the K-steps loss function. We then design an auxiliary control network to encode the nonlinear state-dependent control term to model the nonlinearity in control input. For linear control, this encoded term is considered the new control variable instead, ensuring the linearity of the embedding space. Then we deploy Linear Quadratic Regulator (LQR) on the linear embedding space to derive the optimal control policy and decode the actual control input from the control net. Experimental results demonstrate that our approach outperforms other existing methods, reducing the prediction error by order-of-magnitude and achieving superior control performance in several nonlinear dynamic systems like damping pendulum, CartPole, and 7 Dof robotic manipulator.
翻译:最近Koopman 操作器已成为一个有希望的数据驱动工具, 有利于对未知的非线性系统进行实时控制。 它将非线性系统映射为嵌入空间的等效线性系统, 可供实时线性控制方法使用。 然而, 设计一个合适的 Koopman 嵌入功能仍是一项艰巨的任务。 此外, 多数基于 Koopman 的算法仅考虑带有线性控制输入的非线性系统, 导致当系统完全与控制输入不线性时, 导致糟糕的预测和控制性能。 在这项工作中, 我们提出一个端到端深的学习框架, 以学习库普曼嵌入功能和库普曼操作器, 以共同缓解这些困难。 我们首先将嵌入功能和库普曼操作器与神经网络连接, 并用 K stepts 丢失功能来训练它们端到端端端端端。 我们随后设计了一个辅助的控制网级控制网级的线性软性控制系统, 将现有软性磁带控制方法从正向下, 软性磁带控制系统, 演示式的软性磁带控制系统, 演示, 演示系统, 优化的软性控制方法, 演示演示, 的软性控制方法, 。