This research focuses on the bid optimization problem in the real-time bidding setting for online display advertisements, where an advertiser, or the advertiser's agent, has access to the features of the website visitor and the type of ad slots, to decide the optimal bid prices given a predetermined total advertisement budget. We propose a risk-aware data-driven bid optimization model that maximizes the expected profit for the advertiser by exploiting historical data to design upfront a bidding policy, mapping the type of advertisement opportunity to a bid price, and accounting for the risk of violating the budget constraint during a given period of time. After employing a Lagrangian relaxation, we derive a parametrized closed-form expression for the optimal bidding strategy. Using a real-world dataset, we demonstrate that our risk-averse method can effectively control the risk of overspending the budget while achieving a competitive level of profit compared with the risk-neutral model and a state-of-the-art data-driven risk-aware bidding approach.
翻译:这项研究的重点是网上展示广告实时招标环境中的投标优化问题,广告商或广告商的代理商可以在此了解网站访客的特点和广告插座的类型,以便根据预定的广告总预算确定最佳投标价格。 我们提出了一个风险意识数据驱动的投标优化模式,通过利用历史数据设计投标政策,通过利用历史数据来尽量扩大广告商的预期利润,摸清广告上投标价格的机会类型,并查明在特定时间内违反预算限制的风险。在采用拉格朗日放松措施之后,我们为最佳投标战略提出了一个配对式的封闭式表达方式。我们使用真实世界数据集表明,我们的风险规避方法可以有效控制过度支出预算的风险,同时实现与风险中性模式相比的竞争性利润水平,并采用最先进的数据驱动风险的投标方法。