Hierarchical learning algorithms that gradually approximate a solution to a data-driven optimization problem are essential to decision-making systems, especially under limitations on time and computational resources. In this study, we introduce a general-purpose hierarchical learning architecture that is based on the progressive partitioning of a possibly multi-resolution data space. The optimal partition is gradually approximated by solving a sequence of optimization sub-problems that yield a sequence of partitions with increasing number of subsets. We show that the solution of each optimization problem can be estimated online using gradient-free stochastic approximation updates. As a consequence, a function approximation problem can be defined within each subset of the partition and solved using the theory of two-timescale stochastic approximation algorithms. This simulates an annealing process and defines a robust and interpretable heuristic method to gradually increase the complexity of the learning architecture in a task-agnostic manner, giving emphasis to regions of the data space that are considered more important according to a predefined criterion. Finally, by imposing a tree structure in the progression of the partitions, we provide a means to incorporate potential multi-resolution structure of the data space into this approach, significantly reducing its complexity, while introducing hierarchical feature extraction properties similar to certain classes of deep learning architectures. Asymptotic convergence analysis and experimental results are provided for clustering, classification, and regression problems.
翻译:逐步接近数据驱动优化问题解决方案的等级学习算法对于决策系统至关重要,特别是在时间和计算资源的限制下。 在本研究中,我们引入了一个基于可能多分辨率数据空间逐步分割的通用级级学习结构。最佳分区通过解决一系列优化子问题逐渐近似,这些子问题产生一个分区序列,而子集数量不断增加。我们表明,每个优化问题的解决方案都可以使用无梯度随机近似更新在网上估算。因此,可以在分区的每一组中确定功能近似问题,并使用两度规模的随机近似算法理论加以解决。这模拟了一个反射过程,并定义了一种稳健和可解释的超导法,以任务敏感的方式逐渐增加学习结构的复杂程度,强调根据预先界定的标准被认为更为重要的数据空间区域。最后,通过在分区的进展中设置树形结构,我们提供了一种手段,将可能的多时间尺度近似近似近似近似问题加以界定,并使用双向近似近似近距离算算算算法来解决。这模拟了一个隐含多分辨率结构结构结构的系统,同时将数据引入了该结构的复杂度分析,为了空间的深度结构的分类分析提供了类似的多分辨率分析, 提供了某种结构的深度结构分析。 将数据引入了该结构的深度结构的深度分析提供了某种结构分析。