Time series regression models are commonly used in time series analysis. However, in modern real-world applications, serially correlated data with an ultra-high dimension and fat tails are prevalent. This presents a challenge in developing new statistical tools for time series analysis. In this paper, we propose a novel Bernstein-type inequality for high-dimensional linear processes and apply it to investigate two high-dimensional robust estimation problems: (1) time series regression with fat-tailed and correlated covariates and errors, and (2) fat-tailed vector autoregression. Our proposed approach allows for exponential increases in dimension with sample size under mild moment and dependence conditions, while ensuring consistency in the estimation process.
翻译:一种适用于高维线性过程的Bernstein型不等式及其在时间序列回归鲁棒估计中的应用
Translated Abstract:
时间序列回归模型广泛应用于时间序列分析中。然而,在现代实际应用中,具有超高维度和厚尾特征的序列相关数据非常普遍,这对于开发时间序列分析的新统计工具提出了挑战。本文提出了一种适用于高维线性过程的Bernstein型不等式,并将其应用于研究两个高维鲁棒估计问题:(1)具有厚尾和相关协变量和误差的时间序列回归,(2)具有厚尾的向量自回归。我们的方法可以在轻微的时刻和依赖条件下呈指数增长,同时确保估计过程的一致性。