项目名称: 一类连续型随机过程的非参数统计推断研究
项目编号: No.11401267
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 王允艳
作者单位: 江西理工大学
项目金额: 23万元
中文摘要: 扩散型过程被广泛应用于随机建模,其在社会,物理,工程建设,生命科学以及金融经济 等领域都有着广泛的应用。本项目研究基于高频采样的连续时间二阶扩散过程的非参数统 计推断问题,内容包括:(1)结合局部线性平滑技术和稳健技术建立二阶扩散过程的漂 移系数和扩散系数的非参数局部稳健估计量,并证明得到的局部稳健估计量的相合性和 渐近正态性;(2)利用经验似然方法构造二阶扩散过程的漂移系数的经验似然拟合优度 检验统计量,得到原假设下检验统计量的极限理论。(3)给出二阶扩散过程的扩散系数 的核型估计量的渐近偏差,提出一个能对偏差进行修正的估计量,并证明新的估计量的 相合性和渐近正态性;等。本项目将以二阶扩散过程的统计推断为基础探索出一些有优 良性质的非参数统计推断方法,为统计推断方法的研究与应用提供新的工具与理论。
中文关键词: 经验似然;相合性;渐近正态性;稳健估计;拟合优度检验
英文摘要: Diffusion type processes are widely used for stochastic modeling, and these processes are widely used in the social, physical, engineering, and life sciences as well as in financial economics. This project aims to study the nonparametric statistical in
英文关键词: empirical likelihood;consistency;asymptotic normality;robust estimation;goodness-of-test