In industrial manufacturing processes, errors frequently occur at unpredictable times and in unknown manifestations. We tackle the problem of automatic defect detection without requiring any image samples of defective parts. Recent works model the distribution of defect-free image data, using either strong statistical priors or overly simplified data representations. In contrast, our approach handles fine-grained representations incorporating the global and local image context while flexibly estimating the density. To this end, we propose a novel fully convolutional cross-scale normalizing flow (CS-Flow) that jointly processes multiple feature maps of different scales. Using normalizing flows to assign meaningful likelihoods to input samples allows for efficient defect detection on image-level. Moreover, due to the preserved spatial arrangement the latent space of the normalizing flow is interpretable which enables to localize defective regions in the image. Our work sets a new state-of-the-art in image-level defect detection on the benchmark datasets Magnetic Tile Defects and MVTec AD showing a 100% AUROC on 4 out of 15 classes.
翻译:在工业制造过程中,错误经常发生在不可预测的时间和不为人知的表现形式中。我们处理自动发现缺陷而不要求任何有缺陷部件的图像样本的问题。最近的工作模式是利用强大的统计前科或过于简化的数据表示方式来分配无缺陷图像数据。相反,我们的方法处理细微的表示方式,结合全球和当地图像背景,同时灵活地估计密度。为此,我们提议了一个全新的全进化的跨规模标准化流程(CS-Flow),联合处理不同尺度的多重特征地图。利用正常化流程,为输入样本分配有意义的可能性,从而能够在图像层面有效检测缺陷。此外,由于保持空间安排,正常化流程的潜在空间是可以解释的,从而能够将图像中的缺陷区域本地化。我们的工作为基准数据集Magetic Tile Defects和MVTecAD 设定了一个新的图像级水平的缺陷检测状态。在15类中的4级中显示100% AUROC。