We propose a class of randomized quantum algorithms for the task of sampling from matrix functions, without the use of quantum block encodings or any other coherent oracle access to the matrix elements. As such, our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures. For $N\times N$ Hermitian matrices, the space cost is $\log(N)+1$ qubits and depending on the structure of the matrices, the gate complexity can be comparable to state-of-the-art methods that use quantum data structures of up to size $O(N^2)$, when considering equivalent end-to-end problems. Within our framework, we present a quantum linear system solver that allows one to sample properties of the solution vector, as well as an algorithm for sampling properties of ground states of Hamiltonians. As a concrete application, we combine these two sub-routines to present a scheme for calculating Green's functions of quantum many-body systems.
翻译:我们建议了一组随机量子算法,用于从矩阵函数中取样的任务,而没有使用量子块编码或任何其他一致的矩阵元素准入。因此,我们使用Qubits纯粹是算法性的,对量子数据结构不需要额外的Qubits。对于$N\times N$ Hermitian 矩阵,空间成本为$\log(N)+1美元,并视矩阵结构而定,在考虑等值端对端问题时,门复杂度可以与使用最高为$O(N)2美元的数量数据结构的最先进方法相比。在我们的框架内,我们提出了一个量子线性系统求求解器,允许一个人对溶矢量的特性进行抽样,以及汉密尔顿人地面状态的取样特性算法。作为一个具体应用,我们将这两个子路径结合起来,以提出计算Green的量子体多体系统功能的计划。