The Koopman operator allows a nonlinear system to be rewritten as an infinite-dimensional linear system by viewing it in terms of an infinite set of lifting functions instead of a state vector. The main feature of this representation is its linearity, making it compatible with existing linear systems theory. A finite-dimensional approximation of the Koopman operator can be identified from experimental data by choosing a finite subset of lifting functions, applying it to the data, and solving a least squares problem in the lifted space. Existing Koopman operator approximation methods are designed to identify open-loop systems. However, it is impractical or impossible to run experiments on some systems without a feedback controller. Unfortunately, the introduction of feedback control results in correlations between the system's input and output, making some plant dynamics difficult to identify if the controller is neglected. This paper addresses this limitation by introducing a method to identify a Koopman model of the closed-loop system, and then extract a Koopman model of the plant given knowledge of the controller. This is accomplished by leveraging the linearity of the Koopman representation of the system. The proposed approach widens the applicability of Koopman operator identification methods to a broader class of systems. The effectiveness of the proposed closed-loop Koopman operator approximation method is demonstrated experimentally using a Harmonic Drive gearbox exhibiting nonlinear vibrations.


翻译:Koopman算子通过将非线性系统视为具有无限个取向函数而非状态向量来将其重写为无限维线性系统。这种表示的主要特点是其线性性,使其与现有的线性系统理论相兼容。可以通过选择有限的取向函数子集,将其应用于实验数据并在提升空间中解决最小二乘问题,从实验数据中确定Koopman算子的有限维逼近。现有的Koopman算子逼近方法设计用于识别开环系统。然而,在没有反馈控制器的情况下,一些系统可能无法运行实验,这是不现实或不可能的。不幸的是,引入反馈控制会导致系统的输入和输出之间的相关性,如果忽略控制器,则一些植物动力学难以确定。本文通过利用Koopman表示的线性特性,介绍了一种识别封闭环系统Koopman模型的方法,然后给出了在已知控制器的情况下提取植物Koopman模型的方法。提出的方法扩大了Koopman算子识别方法的适用范围,适用于更广泛的系统类别。所提出的闭环Koopman算子逼近方法的有效性在使用展示了非线性振动的谐波驱动齿轮箱的实验中得到了证明。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员