Historical interactions are the default choice for recommender model training, which typically exhibit high sparsity, i.e., most user-item pairs are unobserved missing data. A standard choice is treating the missing data as negative training samples and estimating interaction likelihood between user-item pairs along with the observed interactions. In this way, some potential interactions are inevitably mislabeled during training, which will hurt the model fidelity, hindering the model to recall the mislabeled items, especially the long-tail ones. In this work, we investigate the mislabeling issue from a new perspective of aleatoric uncertainty, which describes the inherent randomness of missing data. The randomness pushes us to go beyond merely the interaction likelihood and embrace aleatoric uncertainty modeling. Towards this end, we propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework that consists of a new uncertainty estimator along with a normal recommender model. According to the theory of aleatoric uncertainty, we derive a new recommendation objective to learn the estimator. As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty, which is demonstrated to improve the recommendation performance of less popular items without sacrificing the overall performance. We instantiate AUR on three representative recommender models: Matrix Factorization (MF), LightGCN, and VAE from mainstream model architectures. Extensive results on two real-world datasets validate the effectiveness of AUR w.r.t. better recommendation results, especially on long-tail items.


翻译:历史互动是推荐者模式培训的默认选择, 通常显示高度偏差, 即大多数用户- 项目配对都是未观察到的缺失数据。 标准选择将缺失的数据作为负面培训样本处理, 并估计用户- 项目配对与观察到的互动可能性。 这样, 在培训期间, 某些潜在互动不可避免地被错误标记, 这会损害模型的忠诚, 妨碍模型召回错误标签错误的项目, 特别是长尾项目 。 在这项工作中, 我们从测读不确定性的新角度来调查错误标签问题, 描述缺失数据的内在随机性。 随机性促使我们超越互动的可能性, 并接受测读不确定性模型的模型。 朝着这个目的, 我们提议一个新的测读不准确性建议框架, 包括一个新的不确定性估计符, 以及一个正常建议模型。 根据测算不确定性的理论, 我们提出了一个新的建议目标, 测算测算缺失数据误标结果。 作为误标定结果的概率, 明确度A- 显示总体性能的不确定性, 显示一个比标值项目, 更精确度的模型, 显示一个比标值的模型, 更精确度项目 。 显示的是, 更精确的模型, 显示, 精确度模型, 更精确度 显示, 精确度 度 显示, 显示整个性标值项目 显示整个性标值项目 度建议。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员