The real-time interpretation of the logging-while-drilling data allows us to estimate the positions and properties of the geological layers in an anisotropic subsurface environment. Robust real-time estimations capturing uncertainty can be very useful for efficient geosteering operations. However, the model errors in the prior conceptual geological models and forward simulation of the measurements can be significant factors in the unreliable estimations of the profiles of the geological layers. The model errors are specifically pronounced when using a deep-neural-network (DNN) approximation which we use to accelerate and parallelize the simulation of the measurements. This paper presents a practical workflow consisting of offline and online phases. The offline phase includes DNN training and building of an uncertain prior near-well geo-model. The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data accounting for the model errors in the approximate DNN model. We demonstrate the proposed workflow on a case study for a historic well in the Goliat Field (Barents Sea). The median of our probabilistic estimation is on-par with proprietary inversion despite the approximate DNN model and regardless of the number of layers in the chosen prior. By estimating the model errors, FlexIES automatically quantifies the uncertainty in the layers' boundaries and resistivities, which is not standard for proprietary inversion.
翻译:实时诠释伐木时的钻探数据,使我们能够估计在异常的地表下环境里地质层的位置和特性。 强力实时估计捕捉不确定性对于高效的地质勘测作业可能非常有用。 但是,先前概念地质模型中的模型错误和测量的前期模拟可能是对地质层剖面的不可靠估计的重要因素。 当使用我们用来加速和平行模拟测量结果的深腹网络近距离时,模型错误特别明显。本文展示了由离线和在线阶段组成的实用工作流程。离线阶段包括DNN培训和建立一个不确定的近似地理模型。在线阶段使用灵活的迭代多功能光滑动器(FlexIES)实时吸收过深电磁数据,计算出大约DNNM模型模型模型中的模型错误。我们为Golit Flietriel(Barents Sea)所选择的历史井底进行案例研究时,我们所选择的模型和数字的稳性估算的中间值是前期的直径直径直方向,而前的模型和平面结构的中间值是完全的。