Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain generalization framework of invariant risk minimization (IRM). IRM uses data from multiple domains, learns predictors that do not exploit spurious domain-dependent factors, and generalizes better to unseen domains. We propose an IRM-based ITE estimator aimed at tackling treatment assignment bias when there is little support overlap between the control group and the treatment group. We accomplish this by creating diversity: given a single dataset, we split the data into multiple domains artificially. These diverse domains are then exploited by IRM to more effectively generalize regression-based models to data regions that lack support overlap. We show gains over classical regression approaches to ITE estimation in settings when support mismatch is more pronounced.
翻译:从观测数据中推断出因果个别处理效应(ITE)是一个具有挑战性的问题,其困难因治疗分配偏差的存在而更加严重。在这项工作中,我们提出一种新的方法,利用不变化风险最小化(IRM)的通用框架来估计ITE。IMM使用多个领域的数据,学习不利用虚假的依赖领域因素的预测数据,并更好地向隐蔽领域进行概括。我们提议基于IRM的 ITE估计器,目的是在控制组和治疗组之间几乎没有支持重叠的情况下解决治疗分配偏差。我们通过创造多样性来实现这一目标:如果有一个单一数据集,我们人为地将数据分成多个领域。然后,IMM利用这些不同的领域,以便更有效地将基于回归的模型推广到缺乏支持重叠的数据区域。我们在支持不匹配更明显的情况下对ITE进行典型回归法估算,我们展示了在支持不匹配的情况下对ITE进行模拟的收益。