In this paper we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning, a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e. easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing self-paced learning methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. Additionally, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e. CUFS, Flickr15K, QueenMary SBIR and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods.


翻译:在本文中,我们讨论了学习扎实的跨界图象检索(SBIR)的问题。虽然履行机构多数方法侧重于提取中低层次的描述符,以直接匹配地貌,但最近的工作显示学习同时的特征说明的好处是,从两个相关来源了解数据;然而,跨界代表学习方法通常被抛入非混凝土的最小化问题,难以优化,导致业绩不尽人意。受自我节奏学习的启发,这是一种学习方法,旨在通过以有意义的顺序(即容易硬化)利用样本来克服与本地选择有关的趋同问题。我们采用了跨节奏的部分课程学习(CPPCL)框架。与仅考虑单一模式且不能与先前知识打交道的现有自我进度学习方法相比,CPPCL专门设计来通过联合处理来自双重来源的数据以及以前以部分课程形式提供的信息来评估学习进度。此外,我们通过学到的字典,表明拟议的CPPCLL为SBIR(即容易做到硬性地)添加了稳健和相互配合的演示,我们的方法是广泛评价了BFIFIFR的升级方法。

8
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
54+阅读 · 2019年12月22日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
5+阅读 · 2018年3月6日
VIP会员
Top
微信扫码咨询专知VIP会员