Feature similarity matching, which transfers the information of the reference frame to the query frame, is a key component in semi-supervised video object segmentation. If surjective matching is adopted, background distractors can easily occur and degrade the performance. Bijective matching mechanisms try to prevent this by restricting the amount of information being transferred to the query frame, but have two limitations: 1) surjective matching cannot be fully leveraged as it is transformed to bijective matching at test time; and 2) test-time manual tuning is required for searching the optimal hyper-parameters. To overcome these limitations while ensuring reliable information transfer, we introduce an equalized matching mechanism. To prevent the reference frame information from being overly referenced, the potential contribution to the query frame is equalized by simply applying a softmax operation along with the query. On public benchmark datasets, our proposed approach achieves a comparable performance to state-of-the-art methods.
翻译:将参考框架的信息传输到查询框架的相似性匹配,是半监督视频对象分割中的一个关键组成部分。如果采用推测性匹配,背景分散器很容易发生,并降低性能。双向匹配机制试图通过限制将信息传输到查询框架的数量来防止发生这种情况,但有两个限制:(1) 预测性匹配无法充分利用,因为它在测试时间转变为双向匹配;(2) 需要测试时间手工调整,以搜索最佳的超参数。为了克服这些限制,同时确保可靠的信息传输,我们引入了平衡匹配机制。为了防止参考框架信息被过度引用,对查询框架的潜在贡献通过在查询的同时简单应用软体操作来实现。在公共基准数据集中,我们提出的方法取得了与最新方法相似的性能。