项目名称: 双色激光场与原子分子相互作用及相干相位控制研究

项目编号: No.61275132

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 朱遵略

作者单位: 河南师范大学

项目金额: 86万元

中文摘要: 近年来,随着强激光技术的不断发展,激光场中原子分子散射成为了热点研究领域。该方面研究不仅可探索激光与物质相互作用的微观机理,还可为相关实验研究提供强有力的理论指导。但由于激光本身具有频率、极化方向、脉宽等随机特征,激光场的参与使得原本比较复杂的散射过程变得更为复杂,是富有挑战性和创新性的研究课题。另外,具有倍差频率的双色激光场间的相位差是影响激光与物质作用的重要参量,因此双色场中的相干相位控制研究也极具研究应用价值。 本项目将从无场情况下势场描述和处理单色激光场中电子-原子散射的微扰理论方法入手,探索双色激光场中各种相互作用的精确描述,形成一套研究双色激光场中电子与原子分子散射的高阶微扰理论计算方法,系统研究双色激光场中电子与原子分子散射过程中的相干控制等内容。通过解析和数值计算研究,总结双色激光场下电子与原子分子散射中的相干控制等规律,从而探索双色激光场与物质相互作用的微观机理。

中文关键词: 双色激光场;相互作用;散射;相干相位控制;

英文摘要: With the development of the strong laser technology in recent years, atomic and molecular scattering in laser field become a hot research field. These research can not only explore the microscopic mechanism of the laser-matter interaction, but also provide theoretical guidance for experimental studies. However, due to the laser itself has some random characteristic, such as frequency, polarization direction, pulse width and so on, the participation of the laser field makes the original more complex scattering process becomes more complex. So the scattering problem in the laser field has become a challenging and innovative research topics. In addition, the phase difference of bichromatic laser field is an important parameter for influencing the laser-matter interaction. So the coherent phase control for bichromatic laser field is also of great research value. Based on potential field description under no laser and the perturbation theory method that can be used to processe the electron-atom scattering in a monochrome laser field, this project will explore the precise description of the interaction of bichromatic laser field, obtain a set of high-order perturbation theory calculation to deal with the electron scattering from atom and molecule in bichromatic laser field, and then study comprehensively the coherent

英文关键词: bichromatic laser field;interaction;scattering;coherent phase control;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
51+阅读 · 2021年10月16日
【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
28+阅读 · 2021年8月27日
【经典书】概率机器人,668页pdf
专知会员服务
76+阅读 · 2020年12月16日
深度学习预测蛋白质-蛋白质相互作用
机器之心
5+阅读 · 2022年1月15日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员