The field of predictive process monitoring focuses on modelling future characteristics of running business process instances, typically by either predicting the outcome of particular objectives (e.g. completion (time), cost), or next-in-sequence prediction (e.g. what is the next activity to execute). This paper introduces Processes-As-Movies (PAM), a technique that provides a middle ground between these predictive monitoring. It does so by capturing declarative process constraints between activities in various windows of a process execution trace, which represent a declarative process model at subsequent stages of execution. This high-dimensional representation of a process model allows the application of predictive modelling on how such constraints appear and vanish throughout a process' execution. Various recurrent neural network topologies tailored to high-dimensional input are used to model the process model evolution with windows as time steps, including encoder-decoder long short-term memory networks, and convolutional long short-term memory networks. Results show that these topologies are very effective in terms of accuracy and precision to predict a process model's future state, which allows process owners to simultaneously verify what linear temporal logic rules hold in a predicted process window (objective-based), and verify what future execution traces are allowed by all the constraints together (trace-based).


翻译:预测过程监测领域的重点是模拟运行业务流程实例的未来特征,通常通过预测特定目标的结果(如完成(时间),成本)或后继预测(如下一项活动将执行何种活动)来预测特定目标的结果(如完成(时间),成本)或后继预测(如下一项活动将执行何种活动),从而模拟运行业务流程实例的未来特征。本文件介绍了程序-As-Movies(PAM),这是一种在预测性监测之间提供中间点的技术,通过捕捉过程执行跟踪各个窗口中的活动之间的声明过程限制,这是随后执行阶段的一个声明性过程模型。一个过程模型的高维度表示可以应用预测性模型,说明这些制约因素在整个过程执行过程中会如何出现和消失。各种针对高维投入的经常性神经网络结构被用于模拟过程模型的演变,其窗口是时间步骤,包括编码-分解器长期记忆网络,以及革命性短期记忆网络。结果显示,这些表面现象在预测过程模型未来状态方面非常有效,使流程所有人能够同时核查这些制约因素的出现和消失时间规则。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书-IBM推荐】机器学习傻瓜式入门,75页pdf
专知会员服务
48+阅读 · 2020年9月29日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Networks and Denotation
Arxiv
0+阅读 · 2021年3月15日
Arxiv
37+阅读 · 2021年2月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Neural Networks and Denotation
Arxiv
0+阅读 · 2021年3月15日
Arxiv
37+阅读 · 2021年2月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员