Click-through rate (CTR) prediction is an essential task in web applications such as online advertising and recommender systems, whose features are usually in multi-field form. The key of this task is to model feature interactions among different feature fields. Recently proposed deep learning based models follow a general paradigm: raw sparse input multi-filed features are first mapped into dense field embedding vectors, and then simply concatenated together to feed into deep neural networks (DNN) or other specifically designed networks to learn high-order feature interactions. However, the simple \emph{unstructured combination} of feature fields will inevitably limit the capability to model sophisticated interactions among different fields in a sufficiently flexible and explicit fashion. In this work, we propose to represent the multi-field features in a graph structure intuitively, where each node corresponds to a feature field and different fields can interact through edges. The task of modeling feature interactions can be thus converted to modeling node interactions on the corresponding graph. To this end, we design a novel model Feature Interaction Graph Neural Networks (Fi-GNN). Taking advantage of the strong representative power of graphs, our proposed model can not only model sophisticated feature interactions in a flexible and explicit fashion, but also provide good model explanations for CTR prediction. Experimental results on two real-world datasets show its superiority over the state-of-the-arts.
翻译:点击率( CTR) 预测是网络应用中的一项基本任务, 例如在线广告和建议系统, 其特征通常以多字段形式呈现。 任务的关键是模拟不同功能领域之间的相互作用。 最近提出的深层次学习基础模型遵循一个一般范例: 原始的稀疏输入多文件特征首先映射到密度浓厚的实地嵌入矢量中, 然后简单地将组合在一起, 以输入深层神经网络( DNN) 或其他专门设计的网络, 以学习高阶特征互动。 然而, 简单化的 emph{ unstructure 组合} 功能域域域域的功能将不可避免地限制以足够灵活和明确的方式模拟不同领域之间复杂互动的能力。 在这项工作中, 我们提议在图形结构中直观地代表多领域特征, 每一个不匹配功能, 不同的领域可以通过边缘进行互动。 因此, 建模地特征互动的任务可以转换成在相应的图表上建模。 我们设计了一个新型的模型“ 地与神经网络( Fi- GNNNNN) 模型, 将无法限制以足够灵活和清晰的方式模拟的模型上, 。 我们提议的模型只能在精确的图表上提供精确的模型上显示的模型中, 。