While most successful approaches for machine reading comprehension rely on single training objective, it is assumed that the encoder layer can learn great representation through the loss function we define in the predict layer, which is cross entropy in most of time, in the case that we first use neural networks to encode the question and paragraph, then directly fuse the encoding result of them. However, due to the distantly loss backpropagating in reading comprehension, the encoder layer cannot learn effectively and be directly supervised. Thus, the encoder layer can not learn the representation well at any time. Base on this, we propose to inject multi granularity information to the encoding layer. Experiments demonstrate the effect of adding multi granularity information to the encoding layer can boost the performance of machine reading comprehension system. Finally, empirical study shows that our approach can be applied to many existing MRC models.
翻译:虽然大多数成功的机读理解方法都依赖于单一的培训目标,但可以假定,编码器层可以通过我们在预测层中界定的损失函数来学到巨大的代表性,预测层大部分时间是交叉的酶,如果我们首先使用神经网络来编码问题和段落,然后直接结合其编码结果。然而,由于在阅读理解中遥遥失常的反演,编码器层无法有效学习并直接监督。因此,编码器层在任何时候都无法很好地了解其代表性。在此基础上,我们提议向编码层输入多颗粒信息。实验表明,在编码层中添加多颗粒信息的效果可以提高机器阅读理解系统的性能。最后,实证研究表明,我们的方法可以适用于许多现有的MRC模型。