In this work, a real-time hand gesture recognition system-based human-computer interface (HCI) is presented. The system consists of six stages: (1) hand detection, (2) gesture segmentation, (3) use of five pre-trained convolutional neural network models (CNN) and vision transformer (ViT), (4) building an interactive human-machine interface (HMI), (5) development of a gesture-controlled virtual mouse, (6) use of Kalman filter to estimate the hand position, based on that the smoothness of the motion of pointer is improved. In our work, five pre-trained CNN (VGG16, VGG19, ResNet50, ResNet101, and Inception-V1) models and ViT have been employed to classify hand gesture images. Two multi-class datasets (one public and one custom) have been used to validate the models. Considering the model's performances, it is observed that Inception-V1 has significantly shown a better classification performance compared to the other four CNN models and ViT in terms of accuracy, precision, recall, and F-score values. We have also expanded this system to control some desktop applications (such as VLC player, audio player, file management, playing 2D Super-Mario-Bros game, etc.) with different customized gesture commands in real-time scenarios. The average speed of this system has reached 25 fps (frames per second), which meets the requirements for the real-time scenario. Performance of the proposed gesture control system obtained the average response time in milisecond for each control which makes it suitable for real-time. This model (prototype) will benefit physically disabled people interacting with desktops.


翻译:在这项工作中,展示了实时手势识别系统基于人体计算机界面(HCI)的实时手势识别系统(HCI),该系统由六个阶段组成:(1) 手摸检测,(2) 手势分割,(3) 使用五种预先训练的神经神经神经网络模型(CNN)和视觉变压器(VIT),(4) 建立交互式的人体机器接口(HMI),(5) 开发一个手势控制的虚拟鼠标,(6) 使用Kalman过滤器来估计手势位置,其依据是指示器运动的顺利性得到改善。在我们的工作中,已经使用了五个预先训练的CNN (VGG16、VGG19、ResNet50、ResNet101和Incepion-V1) 模型和VT 来对手势图像进行分类。使用两个多级数据集(一个公开和一个习惯)来验证模型。考虑到该模型的性能,Inception-V1 显示比其他四个CNN 模式和 VIT 的第二个机级(在精确、精度、回顾和F- 核心数值方面,我们还扩大了这个系统,这个系统与一些实时的Syal-modeal- mill 动作动作动作操作机的系统将达到某些的S- mactal-de-de-de-deal-listral-de-deal-de-deal-lifal manpeal-liction 这样的系统,这个系统将达到某种Seral-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-d-d-dal-dal-dal-dal-dal-d-d-dal-dal-dal-d-d-d-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-dal-mand-mand-dal-d-d-d-d-d-d-d-dal-dal-dal-d-d-d-dal-d-d-d-d-d-dal-d-d-

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
35+阅读 · 2021年8月2日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关论文
Arxiv
11+阅读 · 2022年9月1日
Arxiv
35+阅读 · 2021年8月2日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员