Objectives: This study aims to provide a comprehensive overview of the role of quadratic polynomials in data modeling and analysis, particularly in representing the curvature of natural phenomena. Methods: We begin with a fundamental explanation of quadratic polynomials and describe their general forms and theoretical significance. We then explored the application of these polynomials in regression analysis, detailing the process of fitting quadratic models to the data using Python libraries NumPy and Matplotlib. The methodology also included calculation of the coefficient of determination (R-squared) to evaluate the polynomial model fit. Results: Using practical examples accompanied by Python scripts, this study demonstrated the application of quadratic polynomials to analyze data patterns. These examples illustrate the utility of quadratic models in applied analytics. Conclusions: This study bridges the gap between theoretical mathematical concepts and practical data analysis, thereby enhancing the understanding and interpretation of the data patterns. Furthermore, its implementation in Python, released under MIT license, offers an accessible tool for public use.
翻译:暂无翻译