Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。

VIP内容

来自Edouard Duchesnay, Tommy Löfstedt, Feki Younes撰写的手把手使用Python进行统计学与机器学习实战,涵盖Python安装使用、统计分析、机器学习与深度学习,实操代码,值得关注!

成为VIP会员查看完整内容
0
28

最新论文

Imperative programming allows users to implement their deep neural networks (DNNs) easily and has become an essential part of recent deep learning (DL) frameworks. Recently, several systems have been proposed to combine the usability of imperative programming with the optimized performance of symbolic graph execution. Such systems convert imperative Python DL programs to optimized symbolic graphs and execute them. However, they cannot fully support the usability of imperative programming. For example, if an imperative DL program contains a Python feature with no corresponding symbolic representation (e.g., third-party library calls or unsupported dynamic control flows) they fail to execute the program. To overcome this limitation, we propose Terra, an imperative-symbolic co-execution system that can handle any imperative DL programs while achieving the optimized performance of symbolic graph execution. To achieve this, Terra builds a symbolic graph by decoupling DL operations from Python features. Then, Terra conducts the imperative execution to support all Python features, while delegating the decoupled operations to the symbolic execution. We evaluated the performance improvement and coverage of Terra with ten imperative DL programs for several DNN architectures. The results show that Terra can speed up the execution of all ten imperative DL programs, whereas AutoGraph, one of the state-of-the-art systems, fails to execute five of them.

0
0
下载
预览
参考链接
父主题
Top
微信扫码咨询专知VIP会员