Control strategies for active prostheses or orthoses use sensor inputs to recognize the user's locomotive intention and generate corresponding control commands for producing the desired locomotion. In this paper, we propose a learning-based shared model for predicting ankle-joint motion for different locomotion modes like level-ground walking, stair ascent, stair descent, slope ascent, and slope descent without the need to classify between them. Features extracted from hip and knee joint angular motion are used to continuously predict the ankle angles and moments using a Feed-Forward Neural Network-based shared model. We show that the shared model is adequate for predicting the ankle angles and moments for different locomotion modes without explicitly classifying between the modes. The proposed strategy shows the potential for devising a high-level controller for an intelligent prosthetic ankle that can adapt to different locomotion modes.
翻译:用于活性假肢或矫形的监控策略使用传感器输入来识别用户的火车头意图,并生成相应的控制指令来生成理想的动动脉。 在本文中,我们提出了一个基于学习的共享模型,用于预测不同动脉移动模式的脚踝联合运动,如低层地面行走、楼梯向上、楼梯向下、斜坡向下和斜坡向下,而无需对其进行分类。从臀部和膝部联合提取的特征,使用一个三角动作来持续预测脚踝角度和时钟,使用基于Feed-Forward神经网络的共享模型。我们表明,共享模型足以预测不同移动模式的脚踝角度和时钟,而无需对模式进行明确分类。拟议战略显示了设计高级控制器的潜力,用于智能假肢脚踝,可以适应不同的移动模式。