Simulation modeling of robots, objects, and environments is the backbone for all model-based control and learning. It is leveraged broadly across dynamic programming and model-predictive control, as well as data generation for imitation, transfer, and reinforcement learning. In addition to fidelity, key features of models in these control and learning contexts are speed, stability, and native differentiability. However, many popular simulation platforms for robotics today lack at least one of the features above. More recently, position-based dynamics (PBD) has become a very popular simulation tool for modeling complex scenes of rigid and non-rigid object interactions, due to its speed and stability, and is starting to gain significant interest in robotics for its potential use in model-based control and learning. Thus, in this paper, we present a mathematical formulation for coupling position-based dynamics (PBD) simulation and optimal robot design, model-based motion control and system identification. Our framework breaks down PBD definitions and derivations for various types of joint-based articulated rigid bodies. We present a back-propagation method with automatic differentiation, which can integrate both positional and angular geometric constraints. Our framework can critically provide the native gradient information and perform gradient-based optimization tasks. We also propose articulated joint model representations and simulation workflow for our differentiable framework. We demonstrate the capability of the framework in efficient optimal robot design, accurate trajectory torque estimation and supporting spring stiffness estimation, where we achieve minor errors. We also implement impedance control in real robots to demonstrate the potential of our differentiable framework in human-in-the-loop applications.
翻译:模拟机器人、物体和环境的模拟模型是所有基于模型的控制和学习的基础。它通过动态编程和模型预测控制以及模拟、转让和强化学习的数据生成得到广泛利用。除了忠实外,这些控制和学习环境中模型的主要特征是速度、稳定性和本地差异。然而,许多机器人流行模拟平台至少缺乏上述特点之一。最近,基于位置的动态(PBD)已经成为一个非常流行的模拟工具,用于模拟僵硬和非硬性物体互动的复杂场景,因为其速度和稳定性,并开始对机器人在基于模型的控制和学习中的潜在用途产生浓厚的兴趣。因此,在本文中,我们为基于位置的模拟和最佳机器人设计、基于模型的动作控制和系统识别提供了数学的组合。我们的框架打破了各种基于联合的、清晰易变的硬性估算机构PBD定义和衍生结果。我们提出了一种带有自动差异的对准方法,它也可以在基于模型的控制和稳定应用中,同时在基于定位和精确的模型的模型中,我们也可以在基于精确的轨道结构上展示我们所演算的模型,我们所演算的模型的模型上,我们所演算的模型框架可以提供我们所演动的精确的模型,以显示我们所演化的模型的模型的模型,我们所演进式的模型的模型,我们所演化的模型可以展示的模型,我们所演化的模型,我们所演化的模型可以展示的模型,我们所演进式的模型可以展示的模型,我们所演的模型,我们所演的模型,我们所演的模型可以展示的模型,我们所演的模型可以展示的模型可以展示的模型,我们所演的模型,我们所演的模型,我们所演的精确的模型,以显示的模型,我们所演的模型可以展示的模型,我们所演的模型,我们所演的模型,我们所演的模型可以展示的模型,我们所演的模型,我们所演的模型可以显示的模型可以展示的模型可以展示的模型可以展示的模型可以展示的模型可以展示的模型,我们所判。