Multivariate time series(MTS) is a universal data type related to many practical applications. However, MTS suffers from missing data problems, which leads to degradation or even collapse of the downstream tasks, such as prediction and classification. The concurrent missing data handling procedures could inevitably arouse the biased estimation and redundancy-training problem when encountering multiple downstream tasks. This paper presents a universally applicable MTS pre-train model, DBT-DMAE, to conquer the abovementioned obstacle. First, a missing representation module is designed by introducing dynamic positional embedding and random masking processing to characterize the missing symptom. Second, we proposed an auto-encoder structure to obtain the generalized MTS encoded representation utilizing an ameliorated TCN structure called dynamic-bidirectional-TCN as the basic unit, which integrates the dynamic kernel and time-fliping trick to draw temporal features effectively. Finally, the overall feed-in and loss strategy is established to ensure the adequate training of the whole model. Comparative experiment results manifest that the DBT-DMAE outperforms the other state-of-the-art methods in six real-world datasets and two different downstream tasks. Moreover, ablation and interpretability experiments are delivered to verify the validity of DBT-DMAE's substructures.
翻译:多变时间序列(MTS)是一个与许多实际应用相关的通用数据类型。然而,MTS(MTS)是一个与许多实际应用相关的通用数据类型。但是,MTS(MTS)存在缺失的数据问题,这导致预测和分类等下游任务退化甚至崩溃。同时缺失的数据处理程序可能会不可避免地在遇到多个下游任务时引起偏差估计和冗余训练问题。本文件提出了一个普遍适用的MTS前导模型,DBT-DMAE(DBT-DMAE),以克服上述障碍。首先,一个缺失的演示模块的设计是引入动态定位嵌入和随机掩码处理,以辨别缺失的症状。第二,我们建议建立一个自动编码结构,以获得通用的MDS编码代表系统,利用一个改良的TCN结构,称为动态双向-TCN,作为基本单位,将动态内核和时间翻转的游戏,以有效绘制时间特征。最后,制定了一个总的输入和损失战略,以确保对整个模型进行充分培训。比较实验结果显示DAE(DAE)优于六个实际数据结构中的其他状态和不同的下游任务。