Depth information matters in RGB-D semantic segmentation task for providing additional geometric information to color images. Most existing methods exploit a multi-stage fusion strategy to propagate depth feature to the RGB branch. However, at the very deep stage, the propagation in a simple element-wise addition manner can not fully utilize the depth information. We propose Global-Local propagation network (GLPNet) to solve this problem. Specifically, a local context fusion module(L-CFM) is introduced to dynamically align both modalities before element-wise fusion, and a global context fusion module(G-CFM) is introduced to propagate the depth information to the RGB branch by jointly modeling the multi-modal global context features. Extensive experiments demonstrate the effectiveness and complementarity of the proposed fusion modules. Embedding two fusion modules into a two-stream encoder-decoder structure, our GLPNet achieves new state-of-the-art performance on two challenging indoor scene segmentation datasets, i.e., NYU-Depth v2 and SUN-RGBD dataset.


翻译:在 RGB-D 语义分割任务中的深度信息事项中,为颜色图像提供额外几何信息。大多数现有方法都利用多阶段融合战略向 RGB 分支传播深度特征。 但是,在非常深的阶段,以简单元素-添加方式传播无法充分利用深度信息。 我们提议将全球-本地传播网络(GLPNet)嵌入二流编码器-解码器结构中。 具体地说,引入了本地背景融合模块(L-CFM),在元素融合之前动态地对两种模式进行统一,引入了全球背景融合模块(G-CFM),通过联合模拟多模式全球背景特征向 RGB 分支传播深度信息。 广泛实验显示了拟议聚合模块的有效性和互补性。 将两个融合模块嵌入双流编码器-解码器结构中,我们的GLPNet在两个具有挑战性的室内分解数据集(即NYU-DTV2 和 SUN-RGBD)上实现了新的状态-艺术性表现。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
79+阅读 · 2020年10月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
专知会员服务
26+阅读 · 2020年2月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Top
微信扫码咨询专知VIP会员