We study multivariate Gaussian models that are described by linear conditions on the concentration matrix. We compute the maximum likelihood (ML) degrees of these models. That is, we count the critical points of the likelihood function over a linear space of symmetric matrices. We obtain new formulae for the ML degree, one via Schubert calculus, and another using Segre classes from intersection theory. We settle the case of codimension one models, and characterize the degenerate case when the ML degree is zero.
翻译:我们研究以浓度矩阵线性条件描述的多变量高斯模型。我们计算这些模型的最大可能性(ML)度。也就是说,我们在对称矩阵的线性空间上计算概率函数的临界点。我们获得了ML学位的新公式,一个通过舒伯特微积分,另一个通过交叉理论的Segre等级。我们解决了共聚一种模型的情况,并在ML学位为零时对退化情况进行定性。