We consider the problem of designing experiments for the comparison of two regression curves describing the relation between a predictor and a response in two groups, where the data between and within the group may be dependent. In order to derive efficient designs we use results from stochastic analysis to identify the best linear unbiased estimator (BLUE) in a corresponding continuous time model. It is demonstrated that in general simultaneous estimation using the data from both groups yields more precise results than estimation of the parameters separately in the two groups. Using the BLUE from simultaneous estimation, we then construct an efficient linear estimator for finite sample size by minimizing the mean squared error between the optimal solution in the continuous time model and its discrete approximation with respect to the weights (of the linear estimator). Finally, the optimal design points are determined by minimizing the maximal width of a simultaneous confidence band for the difference of the two regression functions. The advantages of the new approach are illustrated by means of a simulation study, where it is shown that the use of the optimal designs yields substantially narrower confidence bands than the application of uniform designs.


翻译:我们考虑了两个回归曲线比较的实验问题,这两个回归曲线描述了预测器和两个组的反应之间的关系,这两个组的数据可能取决于这两个组的数据。为了获得有效的设计,我们使用随机分析的结果,在相应的连续时间模型中确定最佳的线性无偏向估计仪(BLUE),显示在使用两个组的数据进行总体同时估算时,得出的结果比对两个组的参数分别估算得出的结果更准确。利用同时估算的BLUE,我们然后为有限的样本大小建立一个高效的线性估计仪,通过尽量减少连续时间模型中的最佳解决方案与(线性估计仪)重量的离散近距离之间的平均正方差。最后,最佳设计点是通过尽量减少两个回归函数差异的同步信任带的最大宽度来确定的。新的方法的优点通过模拟研究加以说明,其中显示,最佳设计的使用比统一设计的应用产生的信任带要小得多。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年7月11日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员