This work presents a novel posterior inference method for models with intractable evidence and likelihood functions. Error-guided likelihood-free MCMC, or EG-LF-MCMC in short, has been developed for scientific applications, where a researcher is interested in obtaining approximate posterior densities over model parameters, while avoiding the need for expensive training of component estimators on full observational data or the tedious design of expressive summary statistics, as in related approaches. Our technique is based on two phases. In the first phase, we draw samples from the prior, simulate respective observations and record their errors $\epsilon$ in relation to the true observation. We train a classifier to distinguish between corresponding and non-corresponding $(\epsilon, \boldsymbol{\theta})$-tuples. In the second stage the said classifier is conditioned on the smallest recorded $\epsilon$ value from the training set and employed for the calculation of transition probabilities in a Markov Chain Monte Carlo sampling procedure. By conditioning the MCMC on specific $\epsilon$ values, our method may also be used in an amortized fashion to infer posterior densities for observations, which are located a given distance away from the observed data. We evaluate the proposed method on benchmark problems with semantically and structurally different data and compare its performance against the state of the art approximate Bayesian computation (ABC).


翻译:这项工作为具有棘手证据和可能性功能的模型提供了一种新颖的事后推断方法。 已经为科学应用开发了无误指导概率的MCMC, 简称为EG-LF-MC, 即无误指导的无概率的MCMC, 或EG- LF- MMC, 用于科学应用, 研究人员有兴趣在模型参数上获得近似后表密度, 同时避免对组成部分估计员进行关于完整观测数据或表达摘要统计数据的烦琐设计进行昂贵的培训, 如在相关方法中一样。 我们的技术基于两个阶段。 在第一阶段, 我们从先前的模拟相关观测中抽取样本, 记录与真实观测有关的美元/ ESlon值错误。 我们训练了一个分类师, 以区分对应和非焦差的 美元( epsilon,\boldybol_theta) 值, 而在第二阶段, 该分类仪表则取决于培训组中记录到的最小的 $lonlon, 并用于计算Markov Conta 取样程序中的过渡性概率。 通过调整MMC, 在特定的估测程中, 其测算中, 在特定的估测程中, 其测程中, 其测算中, 其测算中, 其测算中, 其测算的测算为特定的测算中, 其测算方法的比 其测算为特定的 的比 的 的 的 的 。

0
下载
关闭预览

相关内容

专知会员服务
182+阅读 · 2020年11月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月9日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员