Most machine learning algorithms, such as classification or regression, treat the individual data point as the object of interest. Here we consider extending machine learning algorithms to operate on groups of data points. We suggest treating a group of data points as an i.i.d. sample set from an underlying feature distribution for that group. Our approach employs kernel machines with a kernel on i.i.d. sample sets of vectors. We define certain kernel functions on pairs of distributions, and then use a nonparametric estimator to consistently estimate those functions based on sample sets. The projection of the estimated Gram matrix to the cone of symmetric positive semi-definite matrices enables us to use kernel machines for classification, regression, anomaly detection, and low-dimensional embedding in the space of distributions. We present several numerical experiments both on real and simulated datasets to demonstrate the advantages of our new approach.
翻译:大多数机器学习算法,例如分类或回归,都把单个数据点作为感兴趣的对象。 我们在这里考虑扩大机器学习算法, 以便在数据点组中运行。 我们建议将一组数据点作为根据该组基本特征分布的i. d. 样本处理。 我们的方法是使用内核机器,在i. d. 抽样矢量组上安装内核内核内核。 我们定义了分布配对的某些内核功能, 然后使用非参数估测器, 以根据抽样组一致估计这些功能。 估计的Gram矩阵对正对正半确定矩阵的组合进行预测, 使我们能够使用内核机器进行分类、 回归、 异常检测和低维嵌入分布空间。 我们在真实和模拟数据集上进行了数项实验, 以展示我们新方法的优势。