Generating a short story out of an image is arduous. Unlike image captioning, story generation from an image poses multiple challenges: preserving the story coherence, appropriately assessing the quality of the story, steering the generated story into a certain style, and addressing the scarcity of image-story pair reference datasets limiting supervision during training. In this work, we introduce Plug-and-Play Story Teller (PPST) and improve image-to-story generation by: 1) alleviating the data scarcity problem by incorporating large pre-trained models, namely CLIP and GPT-2, to facilitate a fluent image-to-text generation with minimal supervision, and 2) enabling a more style-relevant generation by incorporating stylistic adapters to control the story generation. We conduct image-to-story generation experiments with non-styled, romance-styled, and action-styled PPST approaches and compare our generated stories with those of previous work over three aspects, i.e., story coherence, image-story relevance, and style fitness, using both automatic and human evaluation. The results show that PPST improves story coherence and has better image-story relevance, but has yet to be adequately stylistic.


翻译:与图像字幕不同的是,从图像生成一个短故事是艰巨的。 与图像字幕不同,从图像生成的故事带来了多重挑战:保存故事的一致性,适当评估故事的质量,将生成的故事引导到一定的风格,解决在培训过程中限制监管的图像相配参考数据集稀缺的问题。 在这项工作中,我们引入了插图和播放故事导体(PPST ), 并通过以下方式改进图像生成到故事生成:1) 将大型预科模型(即 CLIP 和 GPT-2 ) 纳入大型的预科模型( CLIP 和 GPT-2 ), 从而缓解数据稀缺问题, 从而便利流利的图像到文字生成, 且在最小的监管下, 以及 2, 通过引入时尚的调调调控器来促成更具有风格相关性的生成。 我们用非风格、 浪漫型和动作型的 PPST 方法进行图像生成实验, 并将我们生成的故事与以往工作的故事在三个方面进行比较, 即故事的一致性、 图像相关性, 并且具有更好的图像相关性。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月13日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员