Hashing methods, which encode high-dimensional images with compact discrete codes, have been widely applied to enhance large-scale image retrieval. In this paper, we put forward Deep Spherical Quantization (DSQ), a novel method to make deep convolutional neural networks generate supervised and compact binary codes for efficient image search. Our approach simultaneously learns a mapping that transforms the input images into a low-dimensional discriminative space, and quantizes the transformed data points using multi-codebook quantization. To eliminate the negative effect of norm variance on codebook learning, we force the network to L_2 normalize the extracted features and then quantize the resulting vectors using a new supervised quantization technique specifically designed for points lying on a unit hypersphere. Furthermore, we introduce an easy-to-implement extension of our quantization technique that enforces sparsity on the codebooks. Extensive experiments demonstrate that DSQ and its sparse variant can generate semantically separable compact binary codes outperforming many state-of-the-art image retrieval methods on three benchmarks.
翻译:在本文中,我们提出了深球量化(DSQ),这是使深共振神经网络产生监督和紧凑二进制的高效图像搜索代码的一种新颖方法。我们的方法同时学习了将输入图像转换成低维歧视空间的映射方法,并利用多代码书的量化对转换的数据点进行了量化。为了消除标准差异对代码书学习的负面影响,我们强迫网络使用L_2使提取的特性正常化,然后使用专门为单位超镜上的点设计的新的受监督的量化技术对由此产生的矢量进行量化。此外,我们引入了一种便于执行的四进制技术的扩展,该技术使代码库的音量很强。广泛的实验表明,DSQ及其稀有的变异能能够产生精致的精度分解压缩二进制代码,在三个基准上超越了许多状态的图像检索方法。