The study of market equilibria is central to economic theory, particularly in efficiently allocating scarce resources. However, the computation of equilibrium prices at which the supply of goods matches their demand typically relies on having access to complete information on private attributes of agents, e.g., suppliers' cost functions, which are often unavailable in practice. Motivated by this practical consideration, we consider the problem of setting equilibrium prices in the incomplete information setting wherein a market operator seeks to satisfy the customer demand for a commodity by purchasing the required amount from competing suppliers with privately known cost functions unknown to the market operator. In this incomplete information setting, we consider the online learning problem of learning equilibrium prices over time while jointly optimizing three performance metrics -- unmet demand, cost regret, and payment regret -- pertinent in the context of equilibrium pricing over a horizon of $T$ periods. We first consider the setting when suppliers' cost functions are fixed and develop algorithms that achieve a regret of $O(\log \log T)$ when the customer demand is constant over time, or $O(\sqrt{T} \log \log T)$ when the demand is variable over time. Next, we consider the setting when the suppliers' cost functions can vary over time and illustrate that no online algorithm can achieve sublinear regret on all three metrics when the market operator has no information about how the cost functions change over time. Thus, we consider an augmented setting wherein the operator has access to hints/contexts that, without revealing the complete specification of the cost functions, reflect the variation in the cost functions over time and propose an algorithm with sublinear regret in this augmented setting.
翻译:市场均衡研究是经济学理论的核心,特别是在有效地分配稀缺资源方面。然而,以满足商品需求的均衡价格计算的能力通常依赖于对代理商的私有属性的完全信息,例如供应商的成本函数,这些成本函数通常在实践中不可用。在这个实际考虑的背景下,我们考虑了在不完全信息的情况下设置均衡价格的问题,在这种情况下,市场运营商通过从具有私有已知成本函数而不为市场运营商所知的竞争供应商那里购买所需数量的商品来满足顾客需求。在这个不完全信息的情况下,我们考虑在联合优化三个与$T$个时间段相关的性能指标(未满足的需求、成本后悔和支付后悔)的情况下,在$T$个时间段内学习均衡价格的在线学习问题,并在均衡定价的背景下进行。我们首先考虑供应商成本函数固定的情况,并开发了算法,在需求不随时间的情况下实现后悔$O(\log \log T)$,或在需求随时间变化的情况下实现后悔$O(\sqrt{T} \log \log T)$。接下来,我们考虑供应商成本函数可以随时间变化而变化的情况,并且说明当市场运营商没有关于成本函数如何随时间变化的信息时,没有在线算法可以在所有三个指标上实现亚线性的后悔。因此,我们考虑一个扩展的设置,其中运营商可以使用提示/上下文,这些提示/上下文反映成本函数随时间变化的方式,而不揭示成本函数的完整规范,并在这个扩展设置中提出了一种具有亚线性后悔的算法。