We present a new method for real-time non-rigid dense correspondence between point clouds based on structured shape construction. Our method, termed Deep Point Correspondence (DPC), requires a fraction of the training data compared to previous techniques and presents better generalization capabilities. Until now, two main approaches have been suggested for the dense correspondence problem. The first is a spectral-based approach that obtains great results on synthetic datasets but requires mesh connectivity of the shapes and long inference processing time while being unstable in real-world scenarios. The second is a spatial approach that uses an encoder-decoder framework to regress an ordered point cloud for the matching alignment from an irregular input. Unfortunately, the decoder brings considerable disadvantages, as it requires a large amount of training data and struggles to generalize well in cross-dataset evaluations. DPC's novelty lies in its lack of a decoder component. Instead, we use latent similarity and the input coordinates themselves to construct the point cloud and determine correspondence, replacing the coordinate regression done by the decoder. Extensive experiments show that our construction scheme leads to a performance boost in comparison to recent state-of-the-art correspondence methods. Our code is publicly available at https://github.com/dvirginz/DPC.
翻译:我们提出了基于结构形状构造的点云之间实时非硬密密密通信的新方法。 我们的方法称为深点通信(DPC),它需要比以往技术少一部分的培训数据,并提供了更好的概括能力。 直到现在,已经为密集的对应问题提出了两个主要方法。 首先是光谱方法,在合成数据集方面获得巨大结果,但需要在真实世界情景中不稳定时,需要形状和长期推断处理时间的网状连接。 第二种是空间方法,使用编码- decoder 框架将定点云从不规则输入的匹配中重新回归。 不幸的是, 解码器带来了相当大的缺点,因为它需要大量的培训数据,并努力在交叉数据设置的评价中进行概括化。 DPC的新颖之处在于它缺乏一个解码元组成部分。 相反,我们使用隐性相似性和输入坐标本身来构建点云和确定通信,以取代脱coder完成的协调回归。 广义实验显示,我们的建设计划将带来大量的业绩提升到最新的状态/ MAD/ COM 。