Game-theoretic motion planners are a potent solution for controlling systems of multiple highly interactive robots. Most existing game-theoretic planners unrealistically assume a priori objective function knowledge is available to all agents. To address this, we propose a fault-tolerant receding horizon game-theoretic motion planner that leverages inter-agent communication with intention hypothesis likelihood. Specifically, robots communicate their objective function incorporating their intentions. A discrete Bayesian filter is designed to infer the objectives in real-time based on the discrepancy between observed trajectories and the ones from communicated intentions. In simulation, we consider three safety-critical autonomous driving scenarios of overtaking, lane-merging and intersection crossing, to demonstrate our planner's ability to capitalize on alternative intention hypotheses to generate safe trajectories in the presence of faulty transmissions in the communication network.
翻译:游戏理论运动规划者是控制多个高度互动机器人系统的有力解决方案。 多数现有的游戏理论规划者不切实际地假定所有代理都具备先验客观功能知识。 为了解决这个问题,我们提议使用一个不易出错的后退地平线游戏理论运动规划者来利用试剂之间的交流,并意图假想的可能性。 具体地说, 机器人传达其客观功能, 并结合其意图。 一个独立的巴耶斯过滤器旨在根据所观察到的轨迹与所发现的意图之间的差异来实时推断目标。 在模拟中, 我们考虑三种安全临界的自主驾驶方案, 即超载、 车道合并和交叉交叉交叉, 以展示我们的规划者利用替代意图假设的能力, 以便在通信网络出现错误传输的情况下产生安全轨道。