Robust motion forecasting of the dynamic scene is a critical component of an autonomous vehicle. It is a challenging problem due to the heterogeneity in the scene and the inherent uncertainties in the problem. To improve the accuracy of motion forecasting, in this work, we identify a new consistency constraint in this task, that is an agent's future trajectory should be coherent with its history observations and visa versa. To leverage this property, we propose a novel cycle consistency training scheme and define a novel cycle loss to encourage this consistency. In particular, we reverse the predicted future trajectory backward in time and feed it back into the prediction model to predict the history and compute the loss as an additional cycle loss term. Through our experiments on the Argoverse dataset, we demonstrate that cycle loss can improve the performance of competitive motion forecasting models.
翻译:动态场景的强力运动预测是自主车辆的一个关键组成部分。 这是一个具有挑战性的问题,因为现场的不均匀性和问题固有的不确定性。为了提高运动预测的准确性,我们在这项工作中确定了这项任务中新的一致性制约因素,即代理人的未来轨迹应与历史观察和签证保持一致。为了利用这一特性,我们提议了一个新的周期一致性培训计划,并定义了一个新的周期损失,以鼓励这种一致性。特别是,我们扭转了预测的未来轨迹,将其反馈到预测模型中,以预测历史并将损失计算为另一个周期损失术语。我们通过在Argourvers数据集上进行的实验,证明周期损失可以改善竞争性运动预测模型的性能。