Robust motion planning entails computing a global motion plan that is safe under all possible uncertainty realizations, be it in the system dynamics, the robot's initial position, or with respect to external disturbances. Current approaches for robust motion planning either lack theoretical guarantees, or make restrictive assumptions on the system dynamics and uncertainty distributions. In this paper, we address these limitations by proposing the robust rapidly-exploring random-tree (Robust-RRT) algorithm, which integrates forward reachability analysis directly into sampling-based control trajectory synthesis. We prove that Robust-RRT is probabilistically complete (PC) for nonlinear Lipschitz continuous dynamical systems with bounded uncertainty. In other words, Robust-RRT eventually finds a robust motion plan that is feasible under all possible uncertainty realizations assuming such a plan exists. Our analysis applies even to unstable systems that admit only short-horizon feasible plans; this is because we explicitly consider the time evolution of reachable sets along control trajectories. Thanks to the explicit consideration of time dependency in our analysis, PC applies to unstabilizable systems. To the best of our knowledge, this is the most general PC proof for robust sampling-based motion planning, in terms of the types of uncertainties and dynamical systems it can handle. Considering that an exact computation of reachable sets can be computationally expensive for some dynamical systems, we incorporate sampling-based reachability analysis into Robust-RRT and demonstrate our robust planner on nonlinear, underactuated, and hybrid systems.
翻译:强力运动规划意味着计算一个在所有可能的不确定性实现过程中都安全的全球运动计划,无论是在系统动态、机器人初始位置或外部扰动方面,都是安全的。 强力运动规划目前的方法要么缺乏理论保障,要么对系统动态和不确定性分布作出限制性假设。 在本文件中,我们通过提出强力快速探索随机树(Robust-RRRT)算法来解决这些局限性,该算法将远距可达性分析直接纳入基于抽样的控制轨迹合成。我们证明Robust-RRRT对非线性利普西茨连续动态系统具有稳定性的完整(PC),具有受约束的不确定性。换句话说,强力-RRRT最终发现一个强有力的运动计划,在假定存在这种计划的情况下,所有可能的不确定性实现都有可能实现。我们的分析甚至适用于只接受短距可行计划的不稳定的系统;这是因为我们明确地考虑到可达谱的系统随基于控制轨迹的系统的时间演变。由于我们的分析中明确的时间依赖性,PC适用于无法稳定地、不稳定的非线连续的动态动态动态系统。 对于我们所了解的机能的机能的机能性分析来说,这种机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能的机能性分析。