项目名称: 无穷维动力系统的随机小扰动
项目编号: No.11201320
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王小虎
作者单位: 四川大学
项目金额: 22万元
中文摘要: 本项目主要研究无穷维动力系统的随机小扰动问题,包括大偏差原理,越出问题和系统关于随机扰动的稳定强度。首先根据噪声的不同类型,在适当的条件下建立偏微分方程和(偏)泛函微分方程的大偏差理论,估计扰动过程的大偏差概率。接着重点研究在未扰动系统具有一定性质的条件下,例如具有稳定平衡点、不稳定平衡点或者吸引子,研究扰动过程的越出问题,利用大偏差原理和扰动过程的Markov性质获得越出时间和越出分布的渐近估计。最后利用越出时间的渐近估计研究系统的稳定强度。
中文关键词: 随机扰动;无穷维动力系统;随机吸引子;上半连续;越出问题
英文摘要: This projet is mainly concerned with the small random perturbation of infinite dynamical systems,including large deviation principle, exit problem and stability with respect to small random perturbation.Firstly,according to different type of the noise, we establish the large deviation principle and estimate large deviation probability for stochastic partial differential equations and stochastic partial (functional) differential equations under suitable condition.Then, we focus on exit problem for the perturbed process, when the unperturbed system satisfies some properties such as stable equilibrium, unstable equilibrium or attractor. By large deviation principle and the Markov property of the perturbed processes, we obtain the asymptotic estimation on the exit time and exit distribution for the perturbed processes. Finally, we use the asymptotic estimation on the exit time to study the stability with respect to small random perturbation.
英文关键词: Random perturbation;Infinite dimensional dynamical system;Random attractor;Upper semicontinuity;Exit problem