We propose a controllable style transfer framework based on Implicit Neural Representation that pixel-wisely controls the stylized output via test-time training. Unlike traditional image optimization methods that often suffer from unstable convergence and learning-based methods that require intensive training and have limited generalization ability, we present a model optimization framework that optimizes the neural networks during test-time with explicit loss functions for style transfer. After being test-time trained once, thanks to the flexibility of the INR-based model, our framework can precisely control the stylized images in a pixel-wise manner and freely adjust image resolution without further optimization or training. We demonstrate several applications.
翻译:我们提出了一个基于隐性神经表示法的可控风格传输框架,该框架通过测试时间培训来控制标准化输出。 与通常受到不稳定趋同和学习方法影响的传统图像优化方法不同,这些方法往往需要密集培训,而且一般化能力有限。 我们提出了一个模型优化框架,在测试时间优化神经网络,在风格传输方面明显丧失功能。 在经过一次测试时间培训后,由于以IRN为基础的模型具有灵活性,我们的框架可以精确控制标准化图像,以像素方法控制标准化图像,并在不进一步优化或培训的情况下自由调整图像分辨率。 我们展示了几种应用。