The ability to assess the robustness of image classifiers to a diverse set of manipulations is essential to their deployment in the real world. Recently, semantic manipulations of real images have been considered for this purpose, as they may not arise using standard adversarial settings. However, such semantic manipulations are often limited to style, color or attribute changes. While expressive, these manipulations do not consider the full capacity of a pretrained generator to affect adversarial image manipulations. In this work, we aim at leveraging the full capacity of a pretrained image generator to generate highly detailed, diverse and photorealistic image manipulations. Inspired by recent GAN-based image inversion methods, we propose a method called Adversarial Pivotal Tuning (APT). APT first finds a pivot latent space input to a pretrained generator that best reconstructs an input image. It then adjusts the weights of the generator to create small, but semantic, manipulations which fool a pretrained classifier. Crucially, APT changes both the input and the weights of the pretrained generator, while preserving its expressive latent editing capability, thus allowing the use of its full capacity in creating semantic adversarial manipulations. We demonstrate that APT generates a variety of semantic image manipulations, which preserve the input image class, but which fool a variety of pretrained classifiers. We further demonstrate that classifiers trained to be robust to other robustness benchmarks, are not robust to our generated manipulations and propose an approach to improve the robustness towards our generated manipulations. Code available at: https://captaine.github.io/apt/
翻译:评估图像分类者对多种操纵的稳健性的能力对于在现实世界中部署它们至关重要。 最近,对真实图像的语义操纵被考虑为此目的,因为它们可能不会使用标准的对抗性设置出现。 但是,这种语义操纵往往局限于风格、 颜色或属性变化。 虽然表达式, 这些操纵并不考虑预先训练的生成器影响对抗性图像操纵的全部能力。 在这项工作中, 我们的目标是利用预先训练的图像生成器的全部能力, 以产生非常详细、 多样和真实的图像操作。 在基于 GAN 的最新稳健性图像转换方法的启发下, 我们提议了一种叫Adversari Pivital Tutning (APT) 的方法。 但是, APT首先发现一个预训练的生成器的潜伏空间输入器, 最能重建输入图像。 然后将发电机的重量调整为小, 但语义性操纵器, 以愚弄预先训练的稳健性分类方法。 克鲁西, APT 改变了预训练型生成器的输入和重量, 而不是基于GAN 的图像转换方法, 同时保留其直观性操作能力, 。 因此, 将生成一个预变动的图像转换能力。