Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving fundamental problems in combinatorial optimization. The complexity of solving MILPs directly correlates with their support size, which is the minimum number of non-zero integer variables in an optimal solution. A hallmark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows that any feasible integer linear program (ILP) has a solution with support size $s\leq 2m\cdot\log(4m\Delta)$, where $m$ is the number of constraints, and $\Delta$ is the largest coefficient in any constraint. Our main combinatorial result are improved support size bounds for ILPs. To improve granularity, we analyze for the largest $1$-norm $A_{\max}$ of any column of the constraint matrix, instead of $\Delta$. We show a support size upper bound of $s\leq m\cdot(\log(3A_{\max})+\sqrt{\log(A_{\max})})$, by deriving a new bound on the -1 branch of the Lambert $\mathcal{W}$ function. Additionally, we provide a lower bound of $m\log(A_{\max})$, proving our result asymptotically optimal. Furthermore, we give support bounds of the form $s\leq 2m\cdot\log(1.46A_{\max})$. These improve upon the previously best constants by Aliev. et. al. (SIAM J. Optim., 2018), because all our upper bounds hold equally with $A_{\max}$ replaced by $\sqrt{m}\Delta$. Using our combinatorial result, we obtain the fastest known approximation schemes (EPTAS) for the fundamental scheduling problem of makespan minimization of uniformly related machines ($Q\mid\mid C_{\max}$).


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员