The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families -- intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. In order to obtain these results, we use the vertex separator of these graphs effectively, and design space-efficient algorithms to find such separators. The constructions of the separators presented here can be of independent interest.
翻译:图形“可实现性”的问题在于确定在特定图表中是否有从一个顶点到另一个顶点的路径。在本文中,我们研究了三个不同的图形系列的可实现性问题,即约旦地区的交叉图、单位联系磁盘图(平面图)和字符串图。对于其中每一个图表系列,我们为可实现性问题提出空间高效算法。为了获得这些结果,我们有效地使用这些图形的顶点分隔符,并设计具有空间效率的算法来寻找这种分隔符。这里所展示的分隔符的构造可能具有独立的兴趣。