We show that there is a dense set $\Upsilon\subseteq \mathbb{N}$ of group orders and a constant $c$ such that for every $n\in \Upsilon$ we can decide in time $O(n^2(\log n)^c)$ whether two $n\times n$ multiplication tables describe isomorphic groups of order $n$. This improves significantly over the general $n^{O(\log n)}$-time complexity and shows that group isomorphism can be tested efficiently for almost all group orders $n$. We also show that in time $O(n^2 (\log n)^d)$ it can be decided whether an $n\times n$ multiplication table describes a group; this improves over the known $O(n^3)$ complexity.
翻译:我们显示有一组订单的密集值$Upsilon\ subseteq \ mathbb{N} 美元和恒定值 $c$,这样每美元就能够及时决定1美元(n_2(\log n)\c) 美元(美元)(美元)(美元) 乘数表是否描述有异形的顺序组 $(美元) 。这比一般的 $%O(美元) 美元(美元) 美元(美元) 的时数复杂度大得多,并表明几乎所有组的订单都能有效测试无形态。 我们还表明,在时间上, 美元(n_ 2 (log n) 美元(美元) 倍数表是否描述一个组; 这比已知的$(美元) 美元(美元) 复杂度要好得多。