Till now geometric structures don't play a major role in cryptography. Gilbert, MacWilliams and Sloane introduced an authentication scheme in the projective plane and showed its perfectness in the sense of Shannon. In arXiv:2102.10321 we introduced an encryption scheme in the M\"obius plane and showed that it fulfills Shannon's requirement of perfectness in first approximation and also the requirement of completeness according to Kam and Davida. In this paper we will apply a similar approach to define encryption schemes in the geometries of the Laguerre plande and the Minkowski plane. We will show that the encryption scheme in the Laguerre geometry meets Shannon's requirement of perfectness sharp and that the encryption scheme in the Minkowski geometry meets this requirement in first approximation. The Laguerre cipher also fulfills the requirement of completeness according to Kam and Davida.
翻译:吉尔伯特,麦克威廉斯和斯隆在投影平面上引入了一个认证计划,并展示了它完美的香农感。在阿勒西夫:2102.10321中,我们在M\“奥比乌斯”平面上引入了一个加密计划,并表明它满足了香农在第一近似上的完美要求以及卡姆和达维达对完整性的要求。在本文中,我们将采用类似的方法来定义拉盖尔平面和明考斯基平面的加密计划。我们将表明,拉盖尔几何学的加密计划符合香农的完美要求,明科夫斯基几何体的加密计划也符合了第一近似要求。拉盖尔平也满足了卡姆和达维达的完整要求。