The maximum traveling salesman problem (Max TSP) is one of the intensively researched combinatorial optimization problems. It consists of finding a maximum-weight Hamiltonian cycle in a given complete weighted graph. This problem is APX-hard in the general and metric cases but admits approximation schemes in the geometric setting, when the vertices of the input graph are some points in fixed-dimensional real space and the edge weights are induced by some vector norm. In this paper, we propose the first polynomial-time approximation scheme for Max TSP in arbitrary metric space of fixed doubling dimension. In fact, the proposed algorithm implements a scheme EPTAS which, for any fixed $\varepsilon\in(0,1)$, finds a $(1-\varepsilon)$-approximate solution of the considered problem in cubic time. Also, we suggest a polynomial-time algorithm which computes asymptotically optimal solutions of the metric Max TSP in fixed and sublogarithmic doubling dimensions.
翻译:最大旅行销售员问题(Max TSP)是经过深入研究的组合优化问题之一。 它包含在给定的完整加权图表中找到最大重量的汉密尔顿周期。 这个问题在一般和计量案例中是APX硬的, 但在几何设置中承认近似方案, 当输入图的顶点是固定维实际空间中的某些点, 边缘重量是由某种矢量规范引发的。 在本文中, 我们提议为 Max TSP 制定第一个在固定双倍的任意计量空间的多元时近似方案。 事实上, 提议的算法会实施一种ECTAS 方案, 对任何固定的 $\ varepsilon\ in ( 0. 1) 来说, 它在立方时间里找到一个$( 1\ varepsilon) 的近似方法。 另外, 我们建议采用一种多数值算法, 用来计算在固定和子对称的 Max TSP 在固定和子对称的双倍的双维维维维维维维维维度上的 。