This study presents the design of a six-wheeled outdoor autonomous mobile robot. The main design goal of our robot is to increase its adaptability and flexibility when moving outdoors. This six-wheeled robot platform was equipped with some sensors, such as a global positioning system (GPS), high definition (HD) webcam, light detection and ranging (LiDAR), and rotary encoders. A personal mobile computer and 86Duino ONE microcontroller were used as the algorithm computing platform. In terms of control, the lateral offset and head angle offset of the robot were calculated using a differential GPS or a camera to detect structured and unstructured road boundaries. The lateral offset and head angle offset were fed to a fuzzy controller. The control input was designed by Q-learning of the differential speed between the left and right wheels. This made the robot track a reference route so that it could stay in its own lane. 2D LiDAR was also used to measure the relative distance from the front obstacle. The robot would immediately stop to avoid a collision when the distance between the robot and obstacle was less than a specific safety distance. A custom-designed rocker arm gave the robot the ability to climb a low step. Body balance could be maintained by controlling the angle of the rocker arm when the robot changed its pose. The autonomous mobile robot has been used for delivery service on our campus road by integrating the above system functionality.
翻译:本研究展示了六轮户外自动自动移动机器人的设计。 我们机器人的主要设计目标是在室外移动时提高其适应性和灵活性。 这个六轮机器人平台配备了一些传感器, 如全球定位系统(GPS)、高定义(HD)网络摄像头、光探测和测距(LiDAR) 和旋转编码器。 个人移动计算机和86Duino Aone微控制器被用作算法计算平台。 在控制方面, 机器人的横向偏移和头角抵消是用差分全球定位系统或相机来检测结构化和非结构化的道路边界。 横向偏移和头角抵消被装入一个模糊的控制器。 控制输入是由Q学习左轮和右轮之间差异速度(HD) 、 光探测和测距(LiDAR) 设计的。 这让机器人追踪一条参考路径, 以便它可以留在自己的车道上。 2D LIDAR 也用来测量距离前方障碍的相对距离。 当机器人和障碍之间的距离比具体的安全距离小时, 机器人将立即停止碰撞。 向一个模糊的平面偏差和偏角偏角偏移的偏移的偏移的偏移的偏移偏移偏移偏移偏移偏移和偏移的偏移器, 。 一个自定的机械在机器人在机器人的轨道上, 使机器人能够使机器人的轨道的轨道的轨道的轨道的轨道的轨道上移动的机械使机器人的轨道得到一个移动的移动的轨道的轨道得到机械的机械的机械的轨道的固定的轨道的移动的轨道的移动的轨道的轨道的固定。