项目名称: 多喷嘴对置式Fenton脱硝反应器的液滴对撞混合反应机理研究
项目编号: No.21476073
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 有机化学
项目作者: 于新海
作者单位: 华东理工大学
项目金额: 80万元
中文摘要: 本项目提出基于液滴对撞混合的Fenton脱硝反应器,自由基产生即反应,减少现有反应器中由于自由基湮灭造成的H2O2损失。搭建两液滴对撞的微流控实验系统,系统研究液滴对撞过程中液滴形态变化及液滴内液体混合的规律。基于 LBM方法,结合两相流场测试,攻克多液滴对撞混合三维流场模拟中的诸多难点,揭示多液滴对撞混合机理(关键科学问题)。建立基于微流控芯片和共焦显微拉曼光谱仪的液滴内液体浓度变化的测量方法,研究Fenton反应强化NO液相传质的规律。进而将LBM计算结果作为初始参数,采用 Eular-Eular模型对反应器进行三维数值模拟和优化。在此基础上,搭建Fenton脱硝反应装置,系统研究各参数对脱硝反应的影响,深入理解多液滴对撞混合对Fenton反应脱硝的影响规律。本项目致力于为高效、低成本、环境友好的Fenton脱硝反应技术奠定理论和技术基础。
中文关键词: 脱硝;液滴;混合;格子波尔兹曼;两相流
英文摘要: During Fenton reaction, strong oxidative free radicals are produced and then rapidly recombined, resulting in a loss of H2O2. To solve this problem, a a droplet head-on collision reactor for removal of NO form coal-fired flue gas by using Fenton reagent solution is proposed. The free radicals are produced and simultaneously react with NO, thus reducing the H2O2 loss. An experimental setup will be established to systematically investigate the changes in droplet shapes and in the concentrations inside droplets during droplet collision. Several crucial issues in the three-dimensional simulation on two-phase flow field using lattice Boltzmann (LBM) are expected to be solved combining simulation and experimental results. The effects of on-head droplet collision on mixing intensification inside droplet for droplet swarm is revealed. An experimental setup and corresponding method will be achieved using a confocal Raman microscope and micro fluidic chips to measure the concentration distribution inside a droplet as function of NO removal reaction time. The effect of NO removal reaction on the NO mass transfer in liquid is investigated. The three-dimensional simulation on the droplet head-on collision reactor will be carried out using Eular-Eular model with the initial values obtained by LBM. The main parameters of reactor are optimized by simulation results. Based on the optimized result, a droplet head-on collision reactor is developed and the corresponding experimental system for removal of NO is established. The effects of main process parameters on NO removal are systematically studied. The promotional effect of droplet swarm collision on NO removal is further understood. This project aims at providing theoretical and experimental guidance for a high-efficiency, low-cost, environmentally friendly NO removal method using Fenton reagent solution.
英文关键词: NO removal;droplet;mixing;lattice Boltzmann;two-phase flow