Sufficient dimension reduction (SDR) is a successful tool in regression models. It is a feasible method to solve and analyze the nonlinear nature of the regression problems. This paper introduces the \textbf{itdr} R package that provides several functions based on integral transformation methods to estimate the SDR subspaces in a comprehensive and user-friendly manner. In particular, the \textbf{itdr} package includes the Fourier method (FM) and the convolution method (CM) of estimating the SDR subspaces such as the central mean subspace (CMS) and the central subspace (CS). In addition, the \textbf{itdr} package facilitates the recovery of the CMS and the CS by using the iterative Hessian transformation (IHT) method and the Fourier transformation approach for inverse dimension reduction method (invFM), respectively. Moreover, the use of the package is illustrated by three datasets. \textcolor{black}{Furthermore, this is the first package that implements integral transformation methods to estimate SDR subspaces. Hence, the \textbf{itdr} package may provide a huge contribution to research in the SDR field.
翻译:足够维度减少是回归模型中的成功工具。 这是解决和分析回归问题非线性非线性的一个可行方法。 本文介绍了\ textbf{ itdr} R 包件, 该包件提供基于整体转换方法的若干功能, 以全面和方便用户的方式估算SDR子空间。 特别是, \ textbf{ itdr} 包件包括Fourier 方法( Fym) 和计算SDR子空间( 如中央中位子空间( CMS) 和中央子空间( CS) 的组合法。 此外, \ textbf{ itdr} 包件有助于CMS 和 CS 的恢复, 其方法是分别使用迭代 Hessian 变换法( IHT) 和 Fourier 变换法( Inform) 。 此外, 包件的使用由三个数据集来说明 。 \ textcolora{black{ {lack_Permoremor, 这是第一个执行SDIS 亚空域综合转换方法的包件。 因此, 在SDRFripressurgill 中, 中, ress mass 可能提供一个巨大的字段。