By and large, existing computational models of visual attention tacitly assume perfect vision and full access to the stimulus and thereby deviate from foveated biological vision. Moreover, modelling top-down attention is generally reduced to the integration of semantic features without incorporating the signal of a high-level visual tasks that have shown to partially guide human attention. We propose the Neural Visual Attention (NeVA) algorithm to generate visual scanpaths in a top-down manner. With our method, we explore the ability of neural networks on which we impose the biological constraints of foveated vision to generate human-like scanpaths. Thereby, the scanpaths are generated to maximize the performance with respect to the underlying visual task (i.e., classification or reconstruction). Extensive experiments show that the proposed method outperforms state-of-the-art unsupervised human attention models in terms of similarity to human scanpaths. Additionally, the flexibility of the framework allows to quantitatively investigate the role of different tasks in the generated visual behaviours. Finally, we demonstrate the superiority of the approach in a novel experiment that investigates the utility of scanpaths in real-world applications, where imperfect viewing conditions are given.
翻译:总的说来,现有的视觉关注计算模型暗中假定了完美的视觉和完全进入刺激,从而偏离了先入为主的生物视觉。此外,建模自上而下的关注一般会降低到语义特征的整合,而没有包含显示部分引导人类注意力的高级视觉任务信号。我们建议神经视觉关注算法以自上而下的方式产生视觉扫描路径。我们用我们的方法,探索神经网络的能力,这些网络将先变的视觉的生物限制强加在产生像人类一样的扫描路径上。结果产生扫描路径是为了最大限度地提高基本视觉任务(即分类或重建)的性能。广泛的实验表明,拟议的方法在与人类扫描路径相似的情况下,超越了最先进的、不受监督的人类关注模式。此外,框架的灵活性允许定量地调查不同任务在生成的视觉行为中的作用。最后,我们展示了在调查真实世界中扫描路径的实用性(即分类或重建)的新实验中所采用的方法的优越性。