Conjoint analysis is a popular experimental design used to measure multidimensional preferences. Researchers examine how varying a factor of interest, while controlling for other relevant factors, influences decision-making. Currently, there exist two methodological approaches to analyzing data from a conjoint experiment. The first focuses on estimating the average marginal effects of each factor while averaging over the other factors. Although this allows for straightforward design-based estimation, the results critically depend on the distribution of other factors and how interaction effects are aggregated. An alternative model-based approach can compute various quantities of interest, but requires researchers to correctly specify the model, a challenging task for conjoint analysis with many factors and possible interactions. In addition, a commonly used logistic regression has poor statistical properties even with a moderate number of factors when incorporating interactions. We propose a new hypothesis testing approach based on the conditional randomization test to answer the most fundamental question of conjoint analysis: Does a factor of interest matter in any way given the other factors? Our methodology is solely based on the randomization of factors, and hence is free from assumptions. Yet, it allows researchers to use any test statistic, including those based on complex machine learning algorithms. As a result, we are able to combine the strengths of the existing design-based and model-based approaches. We illustrate the proposed methodology through conjoint analysis of immigration preferences and political candidate evaluation. We also extend the proposed approach to test for regularity assumptions commonly used in conjoint analysis. An open-source software package is available for implementing the proposed methodology.
翻译:联合分析是一种通用的实验性设计,用于衡量多层面偏好; 研究人员在控制其他相关因素的同时,审查兴趣因素的差异,同时控制其他相关因素,影响决策; 目前,有两种方法来分析来自协同实验的数据。第一个方法侧重于估计每个因素的平均边际效应,同时平均地考虑其他因素。虽然这样可以直接进行基于设计的估计,但结果关键取决于其他因素的分布和互动效应如何综合。基于模型的替代方法可以计算各种兴趣的数量,但需要研究人员正确指定模型,这是与许多因素和可能的相互作用进行联合分析的艰巨任务。此外,通常使用的后勤回归在统计方面属性较差,即使纳入互动时有少量因素。我们提出基于有条件随机化测试的新的假设测试方法,以回答最根本的协同分析问题:从其他因素出发,我们是否考虑利害关系因素的分布和互动效应的汇总。我们的方法完全基于因素的随机化,因此不受假设的影响。然而,它允许研究人员使用任何测试性统计,包括基于复杂的机器学习算法和可能的相互作用。此外,我们提出基于定期分析的统计方法,因此,我们也可以将现有的强性方法加以综合,通过共同分析。 我们采用共同分析,通过提议的方法,通过共同分析。